MMME2045 Functional Materials

Question 1

The $LiCoO_2$ -based lithium ion batteries were first commercialised in 1991. The two half and total cell reactions during discharge are:

Electrode 1: $Li_xC_6 \rightarrow xLi^+ + 6C + xe^-$

Electrode 2: $Li_{1-x}CoO_2 + xLi^+ + xe^- \rightarrow LiCoO_2$

Overall cell reaction: $Li_{1-x}CoO_2 + Li_xC_6 \rightarrow LiCoO_2 + 6C$

The sum of the molecular weight of the reactants is 170 g mol⁻¹. The cell potential is 3.6 V. Calculate the theoretical specific capacity (express in mAh/g) and specific energy (express in Wh/kg) for the lithium ion battery (considering the mass of reactants only).

Question 2

A commercial electric car is powered by a 42-kWh lithium ion battery pack with a mass of 270 kg.

A commercial lead-acid SLI (Starting Lighting Ignition) battery has a nominal capacity of 24 Ah and voltage of 12 V. It weighs 9 kg.

If we use the lead-acid battery to store the 42-kWh electricity, calculate the mass of the lead-acid battery.

Question 3

Proton exchange membrane fuel cells (PEMFCs) can convert hydrogen into electricity directly through the electrochemical reactions below:

Electrode 1. $H_2 \rightarrow 2H^+ + 2e^-$	(1)
	(-)

Electrode 2: $1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O$ (2)

The overall reaction: $H_2 + 1/2O_2 \rightarrow H_2O$

Identify which electrode is the anode (negative electrode) and which electrode is the cathode (positive electrode).

(3)

The change in enthalpy (Δ H) and Gibbs free energy (Δ G) at 25 °C and 80 °C under standard pressure (1 atm) for the above reaction (3) are given in the Table below. Calculate the theoretical maximum efficiency at 25 °C and 80 °C of the above PEMFC.

	Enthalpy (ΔH, kJ/mol)	Gibbs free energy (ΔG, kJ/mol)
25 °C	-285.83	-237.13
80 °C	-281.68	-228.20

Question 4

Product & Spec.

The Table 1 below list the specifications of four commercial supercapacitors.

Rated Capacitance	Internal Resistance (mΩ)		Max. Current (A)	Leakage Current (m ^A)	Stored Energy (Wh)	Specific Energy (Wh/kg)	Weight
Discharge with constant current at 25℃	AC(100壯)	DC	1 sec discharge rate to 1/2V _R	72hours, 25℃	at V _R	Gravimetric	(g)
600F	< 0.64	< 0.83	541	1.7	0.608	2.90	210
1700F	< 0.50	< 0.65	1,090	2.4	1.721	4.47	385
3500F	< 0.28	< 0.36	2,091	5.5	3.544	5.17	685
5000F	< 0.25	< 0.33	2,547	8.1	5.063	5.44	930
Rated Voltage,V _R			2.7 V				

Calculate the stored energy and specific energy for the commercial supercapacitors.

Solutions:

Solution 1

1 Ah = 1 Amp*hour = 1 C/s * 3,600 s = 3,600 C 1 Wh = 1 J/s * 3,600 s = 3,600 J Specific capacity = $\frac{nF}{[3600 C/Ah*MW]} = \frac{1*96485 C/mol}{[3600 C/Ah * 170 g/mol]}$ =0.158 Ah/g = 158 mAh/g Specific energy = $\frac{nFE}{[3600 J/Wh*MW]} = \frac{1*96485 C/mol * 3.6 V}{[3600 J/Wh * 170 g/mol]}$ =0.568 Wh/g = 568 Wh/kg

Solution 2

The specific energy of the lead acid battery

= 24 Ah × 12 V / 9 kg = 32 Wh/kg

The mass of the lead acid battery required to store the 42 kWh electricity

= $42 \times 1,000$ Wh / 32 Wh/kg

= 1312.5 kg.

Solution 3

Electrode 1 is the anode (negative electrode) as the oxidation reaction occurs and negatively-charged electrons are produced. Electrode 2 is the cathode (positive electrode) as the reduction reaction occurs and the negatively charged electrons move towards to this electrode.

At 25 °C, the theoretical efficiency

 $\eta = \Delta G / \Delta H = (-237.13 \text{ kJ/mol}) / (-285.83 \text{ kJ/mol}) = 83\%$

At 80 °C, the theoretical efficiency

 $\eta = \Delta G / \Delta H = (-228.20 \text{ kJ/mol}) / (-281.68 \text{ kJ/mol}) = 81\%$

Solution 4

Stored energy $E = \frac{1}{2} CU^2$ From the Table, U = 2.7 V.

C =600 F

 $E = \frac{1}{2} \times 600 \text{ F} \times 2.7 \text{ V} \times 2.7 \text{ V} = 2187 \text{ J} = 2187 \text{ J} / (3600 \text{ J} \text{ Wh}^{-1}) = 0.608 \text{ Wh}$ Specific energy = 0.608 Wh / 0.210 kg = 2.90 Wh/kg

C =1700 F

 $E = \frac{1}{2} \times 1700 \text{ F} \times 2.7 \text{ V} \times 2.7 \text{ V} = 6197 \text{ J} = 6197 \text{ J} / (3600 \text{ J} \text{ Wh}^{-1}) = 1.721 \text{ Wh}$ Specific energy = 1.721 Wh / 0.385 kg = 4.47 Wh/kg

C =3500 F

 $E = \frac{1}{2} \times 3500 \text{ F} \times 2.7 \text{ V} \times 2.7 \text{ V} = 12758 \text{ J} = 12758 \text{ J} / (3600 \text{ J} \text{ Wh}^{-1}) = 3.544 \text{ Wh}$ Specific energy = 3.544 Wh / 0.685 kg = 5.17 Wh/kg

C =5000 F

 $E = \frac{1}{2} \times 5000 \text{ F} \times 2.7 \text{ V} \times 2.7 \text{ V} = 18225 \text{ J} = 18225 \text{ J} / (3600 \text{ J} \text{ Wh}^{-1}) = 5.063 \text{ Wh}$ Specific energy = 5.063 Wh / 0.930 kg = 5.44 Wh/kg